BUTE Department of Construction Management and Technology

Basics of time scheduling

08.11.2016

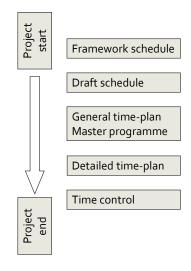
What is a time schedule?

- Why?
 - There are lots of processes during a construction project
 - Some hundreds of people are involved
 - These have to be harmonised in space and in time
- Types of processes
 - Design processes
 - Realisation processes (purchase/preparation of materials)
 - Authority procedures
 - Handover-takeover procedure, permission of use...

What is a time schedule?

- Affecting factors:
 - Law, regulation;
 - Financing;
 - Technology;
 - Resources...
- Time and...
 - Money: Financial schedule, cash-flow
 - Quality: Quality control plan
 - Resources: human, machine, material, money...

What is a time schedule?

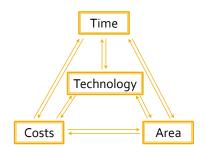

- Purposes and aims
 - To give the duration of a project/construction
 - To expose likely difficulties of the future, and help to solve them
 - To minimize the unproductive time of men and machines
 - To use as a control tool

Plan → Organise → Manage → Control

The time plan has to be detailed (and accurate) enough for the actual use – project manager, construction manager, general foreman, skilled workers, etc.

What is a time schedule?

- Types of schedules according to elaboration (during a building project)
 - The later it is made, the more accurate and detailed it can be
 - Time scale >
 - Number of activities <



"Time planning"

"Time planning"

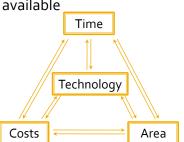
Information needed

- What to do?
 - Operations, activities;
 - Events;
 - Quality and quantity.
- How to do it?
 - Technology;
 - Type of labour (trades);
 - Type of machine, equipment;
 - Subcontractors.
- Costs?

"Time planning"

Information incorporated:

Duration of activities or time span available


Contents on technology (how?)

Time-Space correspondence

Sequence based on technologies

 Milestones: starting and finishing dates → whole duration

Partial payments, cash-flow

"Time planning"

Standards: tools for estimating time required for the processes

- Performance standard [time/unit] (h/m³, h/m²...)
- Standard output [unit/time] (m³/h, pcs/h)
- The standards are determined by statistical/ technical analysis, by measuring and comparing former performance.
- The standards have to be adjusted to the actual circumstances (location, resources, ...)

"Time planning"

Example: partition making (ceramic blocks) 27m2

Volume [unit] x Performance standard [time/unit] = Work [time]

27m2 x 0,56h/m2 = 15,12 h

Work: time of process for one unit of resource

Work [time]

Allocated resource [unit] = Duration [time]

Duration: time of process for the allocated units of resource

15,12h

3 workers = 5,04 h → 1 day (8h/day)

Result information:

- Operation (task), Quantity
- Labour / equipment, quantity
- Duration

"Time planning"

Example: partition making (ceramic blocks) 27m2

Work: time of process for one unit of resource

Volume [unit] x Performance standard [time/unit] = Work [time]

27m2 x 0,56h/m2 = 15,12 h

 $\frac{27m2 \times 0.56h/m2}{\text{Work [time]}} = \frac{0.56h/m2}{\text{Work [time]}} = 15,12 \text{ for all } 15,12 \text{ for all }$

Duration: time of process for the allocated units of resource

Result information:

- Operation (task), Quantity
- Labour / equipment, quantity
- Duration

"Time planning"

From these results

- the time-plan,
- the labour schedule,
- the equipment (plant) schedule,
- the material schedule,
- and the payment schedule can be made.

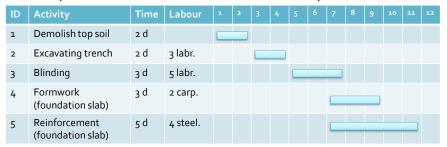
Connections between operations:

- Consecutive
- Parallel

Activities

Overlapping

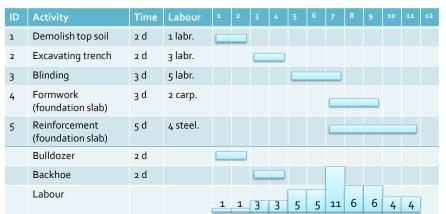
Time schedule representation


Timetable (tabular or alpha-numerical schedule)

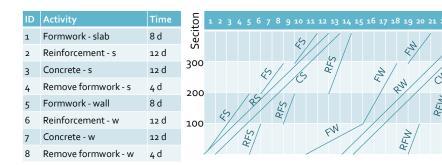
- Data given with numbers dates
- Exact, but difficult to see the current status
 Example: a retaining wall

ID	Activity	Time	Start	Finish	Labour	Machine	Cost	Remark
1	Demolish top soil	2 d	02-04-10	03-04-10		1 bulld.	€	
2	Excavating trench	2 d	04-04-10	05-04-10	3 labr.	ı backh.	€	15% labr.
3	Blinding	3 d	06-04-10	08-04-10	5 labr.		€	
4	Formwork (foundation slab)	3 d	08-04-10	10-04-10	2 carp.		€	
5	Reinforcement (foundation slab)	5 d	08-04-10	12-04-10	4 steel.		€	35% prefabr.

Bar chart - Gantt chart


- Most widely used technique
- A list of project elements (+other information) duration visualised
- Easy to see the current status "today"

Time schedule representation


Bar chart – Gantt chart

Resource management: workers, equipment

Linear schedule – Cyclogram

- It shows progress: space and time
- It consists of two scales one for time (e. g. days, weeks,...) and one for space (+tabular info)

Time schedule representation

Network diagram

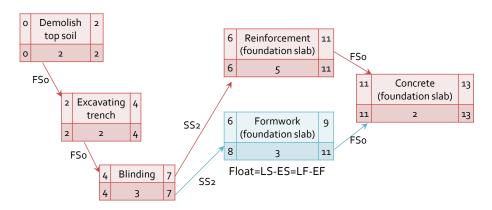
- It contains information about relations of activities
- Easy to see the activities that affect the finishing time of the whole project (critical path), and activities that can have lag (delay).
- Two types of network diagrams:
 - activity on arrow (AOA) CPM
 - activity on node (AON) these are generally easier to create and interpret. (MPM)

Network diagram – MPM network

- Information about activities
 - Task name or ID Starting date(s) Early start Demolish Early finish top soil Finishing date(s) Late start
 - Float (slack)
- Information about relations of activities: finish-start o
 - Relation:

Duration

FSo Excavating trench 4


Late finish

- Finish-Start
- Start-Start
- Finish-Finish...

Time schedule representation

Network diagram

Activity on node (AON) network

